

PHOTOVOLTAICS_Nation/lowa: solar market report/evolution

Tim Dwight
ISETA
Integrated Power

Solar_journey

- 1970

New silicon design brings cost down \$100/w to \$20/w

- 1980

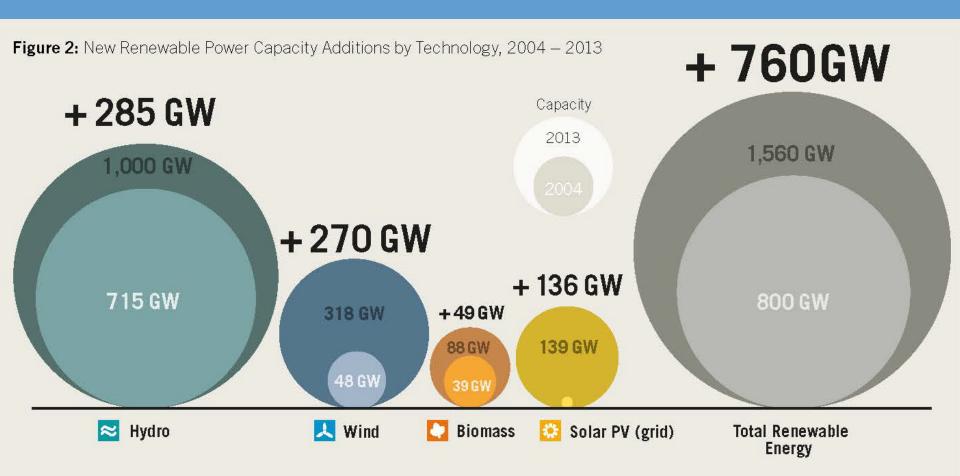
ARCO Solar becomes first company to produce more than 1MW PV per year

- 1983

Global PV production surpasses 21.3 MW in field

- 1999

Global PV capacity reaches 1000 MW

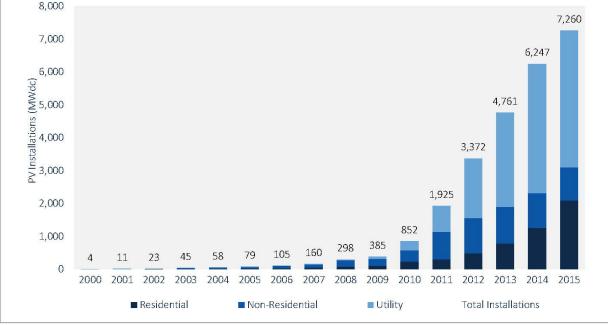

2002

First 38.7-kilowatt station opens in Washington

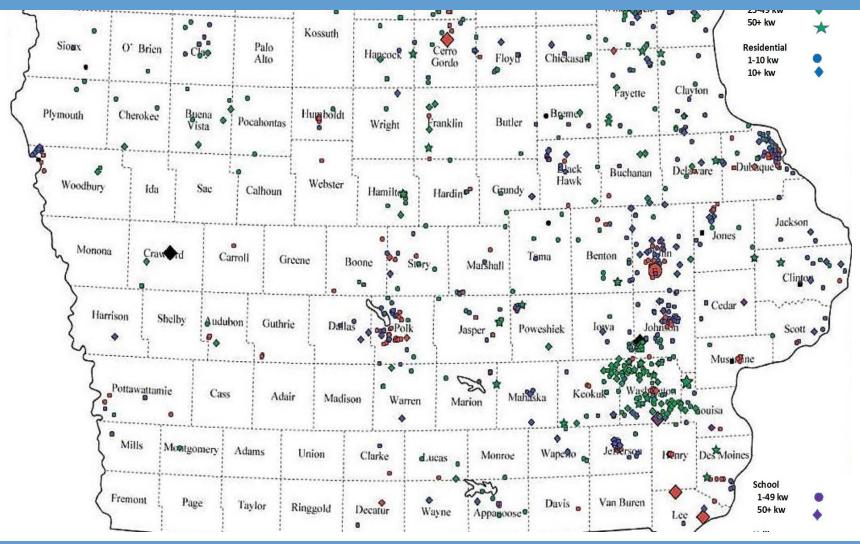
Growth in RE/Solar Capacity

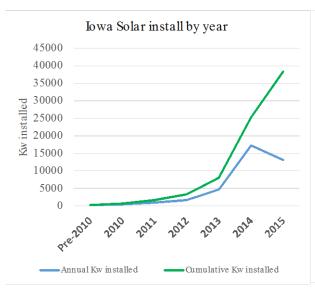
Note: Geothermal figures for 2004 and 2013 were 9 and 12 GW respectively. For CSP, capacity was 0.4 in 2004 and 3.4 GW in 2013. These amounts have been included in the Total Renewable Energy calculation.

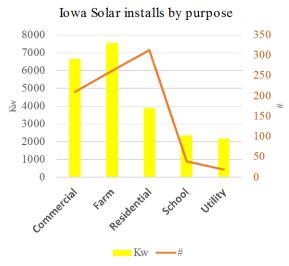
+ 233 GW 2015

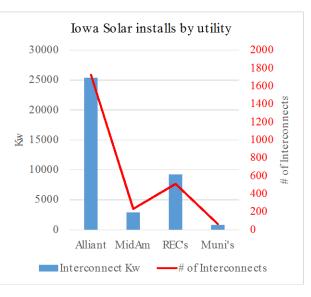

Solar_15 years

Nearly 1 MW of solar PV – enough to power more than 160 homes – was installed almost every hour in the US in 2015.




Figure 1.1 Annual U.S. Solar PV Installations, 2000-2015




Solar_lowa Counties

Solar_lowa Metrics

Install breakdown by year

	#	Kw	Cum Kw	
Pre-2010	78	260	260	
2010	53	448	707	
2011	60	957	1664	
2012	193	1671	3336	
2013	355	4694	8030	
2014	1170	17248	25278	
2015	637	13095	38373	
Total	2,546	38,373		

Install breakdown by purpose

	#	Kw	Average	Largest install
Commercial	210	6661	31.7	500
Farm	262	7552	28.8	374
Residential	313	3905	12.5	63.8
School	39	2343	60.1	725.8
Utility	19	2181	114.8	797.5

School includes colleges and universities

The numbers in this chart and table are based on my verified data

Install breakdown by Utility

	#	Kw
Alliant	1725	25376
MidAm	232	2900
RECs	511	9276
Muni's	65	800
Off-Grid	13	21
Total	2,546	38,373

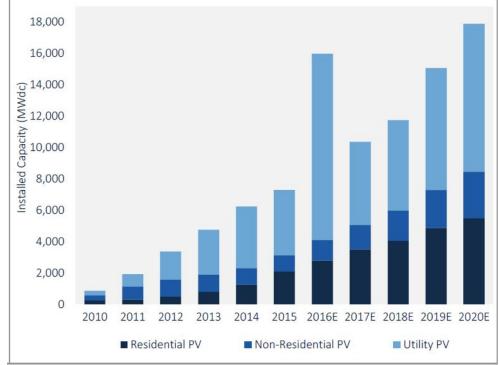
Afew of these interconnects may be in 2016

Solar_Legislative Policies/Results

- Investment Tax Credit fund of \$5 million. 50% of ITC. \$5k Residential, \$20k Commercial.
- lowa's Solar installed capacity reaches 40MW (30MW DG) 2015.
- \$0.015/kWh 20 MW of solar development. '15/'16

Expansion of "community" solar gardens_REC's & Muni's, IOU's

Community Solar Garden, Kalona IA


Solar_Adoption

US Solar Market Set to Grow 119% in 2016

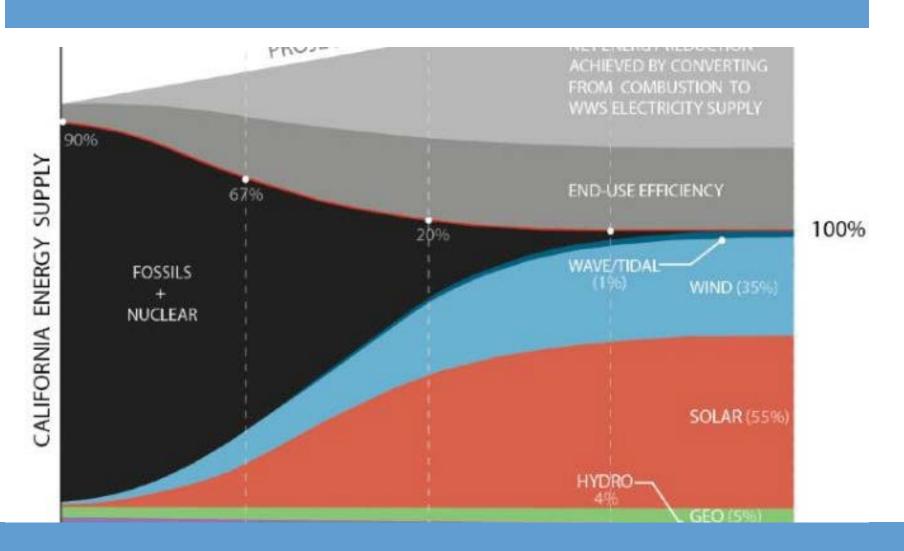


Figure 1.5 U.S. PV Installation Forecast, Current

Solar_30,000' View

Solar_"New" Rate Structure

MARKETS & POLICY

A Rising Tension: 'Value-of-Solar' Tariff Versus Net Metering

TASC members SolarCity, Sungevity, Sunrun and Verengo are battling to keep net energy metering intact.

by Herman K. Trabish April 10, 2014

Solar_Storage Solutions

- Enter storage
- Solar as baseload
- More Flexibility
- Increase "real time"
- Increased Efficiency

Solar_VOST

How the Value of Solar Tariff (VOST) works in Austin, TX

VOST_value of solar

- Methodology
- All Stakeholders
- Efficincey First
- DG increase
- EV's
- Storage
- Grid modernization "real time"
- Utility Business evolution Change

Solar_Static to Dynamic

WITH BASELOAD

Fast peaking (e.g. gas combustion turbine)

Intermediate peaking (e.g. natural gas combined cycle)

Baseload (coal or nuclear)

1 AM 3 AM 5 AM 7 AM 9 AM 11 AM 1 PM 3 PM 5 PM 7 PM 9 PM 11 PM

Time of day

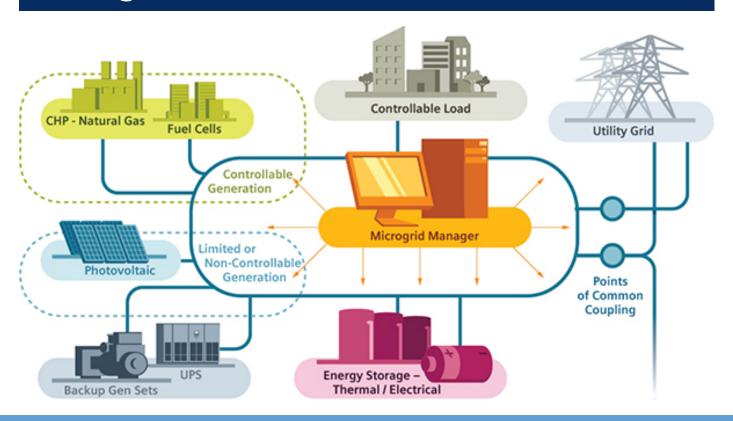
WITHOUT BASELOAD

Flexible source (e.g. hydro power, energy storage)

nflexible source (e.g. wind, solar with no storage)

IAM 3AM 5AM 7AM 9AM 11AM 1PM 3PM 5PM 7PM 9PM 11PN

Time of day


nand for electricity changes throughout the day, peaking in late afternoon. Demand is usually met by a nbination of continuous baseload power (e.g. coal or nuclear) and additional power from other sources as uired. But baseload is not essential for meeting demand. The same demand profile can be met by a nbination of sources that can store power (flexible) and those that can't (inflexible).

SR INSTITUTE FOR Local Self-Reliance

Adapted from David Mills: http://www.abc.net.au/science/articles/2010/12/02/3081889.ht

Solar_Modernization

Microgrid_New Energy Paradigm

5kw_small farm

10kw_residence

60kw_Commercial

40kw_Agriculture

200kw_canopy

1MW Community Solar/Utility

FEC_800kw

The Squad

Solar Thermal

Contact Info

integratecpower

Tim Dwight
Integrated Power
319.631.2006
Tim.dwight@ipowercorp.com